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Abstract	
Encoding	Sudoku	puzzles	as	partially	colored	graphs,	we	state	and	prove	Akman’s	
theorem	[1]	regarding	the	associated	partial	chromatic	polynomial	[2];	we	count	the	
4x4	 sudoku	 boards,	 in	 total	 and	 fundamentally	 distinct;	 we	 count	 the	 diagonally	
distinct	4x4	sudoku	boards;	and	we	classify	and	enumerate	the	different	structure	
types	of	4x4	boards.	
	
Introduction	
Sudoku	 is	 a	 logic-based	 puzzle	 game	 relating	 to	 Latin	 squares	 [3].	 In	 the	 most	
common	 size,	 9x9,	 each	 row,	 column,	 and	 marked	 3x3	 block	 must	 contain	 the	
numbers	 1	 through	 9.	 A	 sudoku	 board	 can	 be	 formed	 for	 any	 n	∈ ℕ,	 with	 the	
resulting	board	having	n	n	x	n	blocks	and	total	size	𝑛!x 𝑛!.	In	this	investigation,	we	
will	use	n	=	2	for	our	boards,	for	4x4	sudoku.	We	selected	this	size,	as	opposed	to	the	
standard	9x9,	for	ease	of	calculation:	there	exist	somewhere	on	the	order	10!"	9x9	
boards	[4].	As	will	be	shown,	there	exist	a	great	deal	fewer	4x4	boards.	
	
	
I.	Sudoku	Puzzles	and	Boards	as	Graphs,	and	Partial	Chromatic	Polynomials	
	
Considering	 a	 sudoku	 board	 as	 a	 mathematical	 object,	 it	 is	 useful	 to	 encode	 a	
completed	board	as	a	graph:	each	vertex	corresponds	to	a	cell	in	the	board,	and	two	
distinct	vertices	are	adjacent	iff	the	two	cells	share	a	row,	column,	or	n	x	n	block.	

Let	a	sudoku	board	be	a	completed	sudoku	puzzle,	so	that	each	of	the	𝑛!	cells	
contains	a	digit.	Let	a	sudoku	puzzle	be	a	partially	completed	sudoku	board:	that	is,	
at	most	𝑛! − 1	cells	contain	digits.	Any	cell	containing	a	digit	can	thus	be	encoded	as	
a	 colored	 vertex.	 If	 a	 board	 is	 properly	 solved—i.e.,	 the	 rules	 of	 sudoku	 are	
respected	and	every	cell	contains	a	digit—then	the	graph	has	a	proper	coloring.	Any	
puzzle,	 then,	corresponds	 to	a	partial	coloring	of	at	 least	one	board.	A	well-formed	
puzzle	 corresponds	 to	 exactly	 one	 board:	 a	 well-formed	 puzzle	 has	 a	 unique	
solution.	 This	 is	 not	 the	 case	 for	 every	 puzzle;	 indeed,	 a	 puzzle	 that	 is	 not	 well-
formed	may	not	have	a	solution,	and	will	not	correspond	to	any	board.	

Note:	individual	cells	shall	be	referred	to	by	their	(𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛)	coordinates.	
An	equivalence	class	of	a	 cell	 shall	 comprise	all	 cells	 currently	marked	with,	or	 to	
include,	the	same	entry	as	the	cell.	
Take,	for	example,	the	puzzle:	
	

		 2	 		 4	

3	 		 		 2	

2	 3	 4	 1	

4	 1	 2	 3	

Figure	1:	A	4x4	sudoku	puzzle.	



As	a	partially	colored	graph,	we	have	equivalence	classes:	
	"1" = 1, 1 = 1, 1 , 3, 4 ;	"2" = 1, 2 = 1, 2 , 2, 4 , 3, 1 , 4, 3 ;	
"3" = 2, 1 = 2, 1 , 3, 2 , 4, 4 ;	"4" = 1, 4 = { 1, 4 , 3, 3 , 4, 1 }.	
Any	 board	 correspond	 to	 this	 puzzle	 will	 be	 a	 completion	 of	 this	 puzzle.	 Any	
properly	 colored	 board	 corresponding	 to	 the	 coloring	 of	 this	 puzzle	 will	 be	
consistent	with	the	partial	coloring	of	the	puzzle.	

According	 to	 the	 standard	 rules	 of	 sudoku,	 only	𝑛!	colors,	 or	 the	 numbers	
{1,… ,𝑛} 	may	 be	 used	 to	 complete	 the	 coloring/board.	 However,	 the	 only	
requirement	for	a	proper	coloring	to	be	consistent	with	the	partial	coloring	is	that	
the	 already-colored	 vertices	 retain	 their	 colors	 (this	 also	 implies	 that	 the	 existing	
equivalence	classes	and	 independent	sets	retain	their	current	members).	Then	the	
minimum	 number	 of	 colors	 required	 for	 a	 proper,	 consistent,	 completion	 of	 any	
partial	 coloring	 is	 equal	 to	 the	 number	 of	 colors	 present	 in	 the	 partial	 coloring,	
which	 is	 the	 same	 as	 the	 number	 of	 distinct	 digits	 appearing	 in	 the	 puzzle.	 The	
maximum	number	of	colors	which	may	appear	in	a	proper,	consistent,	completion	of	
a	 partial	 coloring	 is	 equal	 to	 the	number	 of	 blank	 cells	 plus	 the	number	 of	 colors	
appearing	in	the	puzzle:	to	be	consistent,	a	proper	completion	must	not	change	any	
of	 the	 colors	 used,	 and	 so	 will	 require	 at	 least	 that	 many	 colors.	 Going	 beyond	
standard	sudoku	play,	each	blank	cell	may	receive	an	unused	distinct	digit.	Then	the	
greatest	number	of	 colors	 for	any	proper,	 consistent	 completion	 is	 the	 sum	of	 the	
number	of	distinct	clues	and	the	number	of	empty	cells.	

Any	two	vertices	with	the	same	color	share	an	equivalence	class;	further	they	
are	 in	 the	 same	 independent	 set.	 Note	 that	 there	 is	 a	 one-to-one	 correspondence	
between	 independent	 sets	 and	 color	 classes.	 Any	 un-colored	 vertex	 (empty	 cell)	
may	be	placed	into	an	existing	independent	set,	provided	that	the	coloring	remains	
proper	 (the	 rules	 of	 sudoku	 are	 respected),	 or	 it	 may	 be	 placed	 into	 a	 new	
independent	 set.	 Call	 a	 proper	 completion	 of	 the	 partial	 coloring	 generic	 if	 it	 is	
merely	 a	 partitioning	 of	 the	 vertices	 into	 independent	 sets:	 that	 is,	 no	 colors	
assigned	to	the	empty	cells	while	they	are	placed	into	color	classes.	

Using	 the	 technique	 of	 deletion-contraction,	 the	 chromatic	 polynomial	 of	 a	
graph	 can	 be	 found:	𝜒(𝐺, 𝑘),	 where	𝜒(𝐺, 𝑘)	equals	 the	 number	 of	 proper	 vertex	
colorings	of	the	graph	G	using	at	most	k	colors.	This	technique	can	also	be	used	on	a	
partially	colored	graph,	to	generate	the	partial	chromatic	polynomial.	If	we	observe	
the	same	puzzle	as	Fig.	1,	we	see	that	cell	(1, 3)	must	avoid	two	colors,	those	of	color	
classes	“2”	and	“4”.	More	specifically,	 the	cell	(1, 3)	cannot	share	a	color	class	with	
equivalence	classes	 1, 2  & [ 1, 4 ].	

	

		 2	 		 4	

3	 		 		 2	

2	 3	 4	 1	

4	 1	 2	 3	



We	shall	encode	the	empty	cells	as	a	graph	(with	the	vertices	labeled	with	their	grid	
coordinates):	

	
We	shall	now	encode	it	as	a	partially	colored	graph,	replacing	the	vertex	labels	with	
the	color	classes	each	vertex	must	avoid	for	a	proper	coloring:	
	

	
When	 applying	 deletion-contraction,	 any	 vertex	 formed	 by	 contracting	 an	 edge	
shares	the	adjacencies,	and	thus	the	coloring	restrictions,	of	the	previously	distinct	
vertices.	Then	the	restricted	color	classes	of	a	contracted-edge	vertex	correspond	to	
the	 union	 of	 the	 restrictions	 of	 the	 distinct	 vertices.	 We	 now	 apply	 deletion-
contraction	 to	 our	 sample	 partial	 coloring,	 using	 the	 recursion	 formula	 for	 the	
chromatic	polynomial,	𝜒 𝐺, 𝑘 =  𝜒 𝐺 − 𝑒, 𝑘 − 𝜒(𝐺 ∙ 𝑒, 𝑘).	Note:	we	shorten	𝜒 𝐺, 𝑘 	
to	𝜒 𝐺 .					
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,	we	see	that	vertex	C	must	avoid	four	colors;	then	for	a	
k-coloring,	 it	 can	 receive	 any	 of	𝑘 − 4	colors.	 Vertex	 B	

must	avoid	colors	“2”	and	“4”,	as	well	as	whichever	color	is	placed	on	vertex	C;	then	
B	can	receive	any	of	𝑘 − 3	colors.	Vertex	A	must	avoid	colors	“2”,	“3”,	and	“4”,	and	so	
can	 receive	 any	 of	𝑘 − 3	colors.	 Then	 the	 term	 for	 this	 portion	 of	 the	 chromatic	
polynomial	 is 𝑘 − 4 𝑘 − 3 !.	 Applying	 this	 reasoning	 to	 every	 term,	we	 find	 that	
chromatic	polynomial	with	restrictions	of	our	puzzle	is:	
	
𝜒 𝐺, 𝑘 = 𝑘 − 3 ! − 𝑘 − 3 ! 𝑘 − 4 − 𝑘 − 4 𝑘 − 3 ! + 𝑘 − 4 !

− 𝑘 − 4 𝑘 − 3 ! + 𝑘 − 4 𝑘 − 3 + 𝑘 − 4 !	
𝜒 𝐺, 𝑘 = 𝑘! − 15𝑘! + 87𝑘! − 230𝑘 + 233	
	
In	order	for	any	coloring	to	be	consistent	with	the	puzzle,	k	must	be	at	least	as	large	
as	the	number	of	distinct	colors	already	used:	here,	𝑘 ≥ 4.	
	
	



We	see	 that	𝜒 4 = 1;	 indeed,	 this	puzzle	has	one	possible	completion	 in	 line	with	
standard	sudoku	rules:	
	

	
	
 →		
	
	
	
	
	

We	also	see	that	𝜒 5 = 8.	This	indicates	that	if	5	colors,	or	the	digits {1,… , 5}	were	
to	be	allowed,	then	there	are	8	possible	consistent	boards:	
	
5	 2	 3	 4	 		 5	 2	 1	 4	 		 5	 2	 3	 4	

3	 4	 1	 2	 		 3	 4	 5	 2	 		 3	 4	 5	 2	

2	 3	 4	 1	 		 2	 3	 4	 1	 		 2	 3	 4	 1	

4	 1	 2	 3	 		 4	 1	 2	 3	 		 4	 1	 2	 3	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

1	 2	 3	 4	 		 1	 2	 5	 4	 		 1	 2	 3	 4	

3	 5	 1	 2	 		 3	 5	 1	 2	 		 3	 4	 5	 2	

2	 3	 4	 1	 		 2	 3	 4	 1	 		 2	 3	 4	 1	

4	 1	 2	 3	 		 4	 1	 2	 3	 		 4	 1	 2	 3	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

1	 2	 5	 4	 		 1	 2	 3	 4	 	 	 	 	 	

3	 4	 1	 2	 		 3	 4	 1	 2	 	 	 	 	 	

2	 3	 4	 1	 		 2	 3	 4	 1	 	 	 	 	 	

4	 1	 2	 3	 		 4	 1	 2	 3	 	 	 	 	 	

		 2	 		 4	

3	 		 		 2	

2	 3	 4	 1	

4	 1	 2	 3	

1	 2	 3	 4	

3	 4	 1	 2	

2	 3	 4	 1	

4	 1	 2	 3	



Note	that	a	proper	k-coloring	is	a	proper	coloring	using	at	most	k	colors:	allowing	5	
colors	does	not	prevent	a	4-coloring.	Then	𝜒(5),	the	number	of	completions	using	at	
most	 5	 digits,	 is	 equal	 to	𝜒(4),	 the	 number	 of	 completions	 using	 at	most	 4	 digits	
(here,	 there	 is	 one),	 plus	 the	 number	 of	 completions	 using	 exactly	 5	 digits	 (here,	
there	are	seven).	

Let	n	now	be	the	number	of	vertices	in	the	graph	encoding	of	the	sudoku	grid	
(for	9x9,	𝑛 = 81;	 for	4x4,	𝑛 = 16);	 let	t	be	the	number	vertices	already	colored	(or	
the	number	of	clues	appearing	in	the	puzzle);	let	𝜆!	be	the	number	of	distinct	colors	
in	 the	 partial	 coloring	 (or	 the	 number	 of	 distinct	 digits	 among	 the	 clues).	 In	 our	
example,							 ,	𝑛 = 16; 𝑡 = 12;  𝜆! = 4.	
	
	
	
	
	
	
	
	
	
We	now	state	Akman’s	 theorem	[1]:	 “Let	G	 be	a	graph	with	n	 vertices,	 and	C	 be	a	
partial	proper	coloring	of	t	vertices	of	G	using	exactly	𝜆!	colors.	Define	𝑝!,!(𝜆)	to	be	
the	number	of	ways	C	can	be	completed	to	a	proper	𝜆-coloring	of	G.	Then	for	𝜆 ≥ 𝜆!,	
the	expression	𝑝!,!(𝜆)	is	a	monic	polynomial	of	degree	𝑛 − 𝑡.”	
	
Proof:	Following	our	earlier	discussion,	the	partial	proper	coloring,	C,	of	t	vertices,	is	
the	puzzle	with	t	clues,	𝜆!	of	which	are	distinct	digits.	For	𝜆 = 𝜆!,	no	new	colors	may	
be	added	 (no	new	digits	may	be	used).	That	 is,	 there	shall	 remain	exactly	𝜆!	color	
classes	in	the	completed	board;	since	these	colors	are	already	assigned,	there	is	one	
way	color	assignment.	 If	 the	board	has	𝜆 = 𝜆! + 1	independent	sets,	 then	since	the	
puzzle	already	has	𝜆!	independent	sets,	all	cells	belonging	to	any	existing	color	class	
must	retain	 the	already-	assigned	color;	any	cells	belonging	to	 the	new	color	class	
will	receive	the	𝜆 − 𝜆! = 1	new	color.		

As	previously	discussed,	the	maximum	number	of	color	classes	appearing	in	
any	 board	 is	 the	 sum	 of	 the	 number	 of	 already	 appearing	 color	 classes	 and	 the	
number	of	empty	cells.	Then	the	total	number	of	color	classes/independent	sets	 is	
here	𝜆! ≤ 𝜆 ≤ 𝑛 − 𝑡 + 𝜆!.	 If	 we	 let	𝑟 = 𝜆 − 𝜆!,	 the	 number	 of	 new	 color	 classes,	
then	0 ≤ 𝑟 ≤ 𝑛 − 𝑡.	

We	 apply	 induction	 to	𝜆 > 𝜆! :	 for	 each	 additional	 new	 color	 class,	 all	
previously	 assigned	 colors	 must	 be	 avoided,	 and	 we	 find	 a	 falling	 factorial	 of	
possible	color	choices	for	each	of	the	additional	r	color	classes,	up	to	𝑟 = 𝑛 − 𝑡.	Since	
𝑟 = 0	is	 included	 (and	 applies	 to	 no	new	 colors),	 then	 there	 are	 𝜆 − 𝜆! (𝜆 − 𝜆! −
1) ∙∙∙ (𝜆 − 𝜆! − 𝑟 + 1)	ways	 of	 applying	 colors	 to	 the	 color	 classes	 for	 the	 board	
partition	wherein	each	blank	cell	is	in	its	own	color	class.	

Then	 we	 have	 determined	 the	 number	 of	 ways	 of	 assigning	 colors	 to	 the	
𝜆! + 𝑟	color	 classes	 of	 a	 given	 partition	 of	 the	 board.	 Call	 the	 number	 of	 ways	 of	

		 2	 		 4	

3	 		 		 2	

2	 3	 4	 1	

4	 1	 2	 3	



partitioning	 the	𝑛 − 𝑡	empty	 cells	 into	 exactly	 r	 color	 classes	𝑚!(𝐺,𝐶).	 For	 each	
distinct	 partitioning	 of	 the	 puzzle	 and	 empty	 cells	 into	 color	 classes,	 there	 are	
𝜆 − 𝜆! (𝜆 − 𝜆! − 1) ∙∙∙ (𝜆 − 𝜆! − 𝑟 + 1)	ways	of	assigning	colors.	Then	where	𝜒(𝑘),	
the	 chromatic	 polynomial	 evaluated	 at	 k,	 indicates	 the	 number	 of	 complete,	
consistent	 colorings	of	 a	𝜆!-partial-coloring	using	at	most	k	 colors,	𝜒(𝑘)	equals	 the	
sum	 of	 the	 number	 of	 completions	 using	 exactly	𝜆!	colors,	 exactly	𝜆! + 1	colors,…,	
exactly	 k	 colors.	 Then	 𝜒 𝑘 = 𝑚! 𝐺,𝐶 𝜆 − 𝜆! 𝜆 − 𝜆! − 1 ∙∙∙ 𝜆 − 𝜆! − 𝑟 +!!!

!!!
1 = 𝑝!,!(𝜆).	 Each	 term	 is	 a	 polynomial	 of	 degree	 r;	 the	 last	 term	 is	 of	 degree	
𝑟 = 𝑛 − 𝑡 ,	 and	 correspoinds	 to	 the	 complete	 colorings	 using	 exactly	𝑛 − 𝑡 	new	
colors,	 or	 partitioning	 the	 empty	 cells	 into	 exactly	𝑛 − 𝑡	new	 color	 classes.	 Since	
there	are	exactly	𝑛 − 𝑡	empty	cells/un-colored	vertices,	then	there	is	only	one	such	
partition.	And	since	each	term	of	degree	r,	 for	0 ≤ 𝑟 ≤ 𝑛 − 𝑡,	 the	sum	of	the	terms,	
𝑝!,! ,	is	monic	of	degree	𝑛 − 𝑡,	and	corresponds	directly	to	the	chromatic	polynomial	
of	the	sudoku	graph	with	initial	coloring	restraints	on	the	empty	cells.	◊	
	
	
II.	Enumeration	of	4x4	Sudoku	Boards	
	
A.	Total	Enumeration:		
	
Claim:	∃	288	total	4x4	sudoku	boards.	
	
Proof:	Pick	an	arbitrary	filling-in	of	the	upper	left	2x2	
block:		
	
	
	
	
	
	
	
Turning	toward	the	lower	right	block,	we	recognize	that	“d”	must	appear	in	one	of	
the	4	spots	{(3,	3),	(3,	4),	(4,	3),	(4,	4)}.	We	condition	four	cases:	

I	 1	 2	 3	 4	

	

II	 1	 2	 3	 4	

1	 a	 b	 		 		

	

1	 a	 b	 		 		

2	 c	 d	 		 		

	

2	 c	 d	 		 		

3	 		 		 d	 		

	

3	 		 		 	 d	

4	 		 		 		 		

	

4	 		 		 		 		

	
	

	 1	 2	 3	 4	

1	 a	 b	 		 		

2	 c	 d	 		 		

3	 		 		 	 		

4	 		 		 		 		



III	 1	 2	 3	 4	

	

IV	 1	 2	 3	 4	

1	 a	 b	 		 		

	

1	 a	 b	 		 		

2	 c	 d	 		 		

	

2	 c	 d	 		 		

3	 		 		 	 		

	

3	 		 		 	 		

4	 		 		 d	 		

	

4	 		 		 		 d	

	
For	each	case,	we	subscript	the	possible	entries	for	all	remaining	empty	cells:	

I	 1	 2	 3	 4	

	

II	 1	 2	 3	 4	

1	 a	 b	
c	 d	

	

1	 a	 b	
d	 c	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

3	
b	 ac	

d	
ac	

	

3	
b	 ac	 ac	

d	

4	
d	 ac	 ab	 abc	

	

4	
d	 ac	 abc	 ab	

	

III	 1	 2	 3	 4	

	

IV	 1	 2	 3	 4	

1	 a	 b	
c	 d	

	

1	 a	 b	
d	 c	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

3	
d	 ac	 ab	 abc	

	

3	
d	 ac	 abc	 ab	

4	
b	 ac	

d	
ac	

	

4	
b	 ac	 ac	

d	

	
We	note	that	for	each	case,	there	is	a	single	cell	with	three	possible	entries:	{I:	(4,	4),	
II:	(4,	3),	III:	(3,	4),	IV:	(3,	3)}.	Any	cell	with	a	single	option	is	filled,	and	we	condition	
subcases:	
	
	
	
	
	
	



Ia	 1	 2	 3	 4	

	

Ib	 1	 2	 3	 4	

	

Ic	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

3	 b	
ac	

d	
ac	

	

3	 b	
ac	

d	
ac	

	

3	 b	
ac	

d	
ac	

4	 d	
ac	 ab	

a	

	

4	 d	
ac	 ab	

b	

	

4	 d	
ac	 ab	

c	

	

IIa	 1	 2	 3	 4	

	

IIb	 1	 2	 3	 4	

	

IIc	 1	 2	 3	 4	

1	 a	 b	 d	 c	

	

1	 a	 b	 d	 c	

	

1	 a	 b	 d	 c	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

3	 b	
ac	 ac	

d	

	

3	 b	
ac	 ac	

d	

	

3	 b	
ac	 ac	

d	

4	 d	
ac	

a	
ab	

	

4	 d	
ac	

b	
ab	

	

4	 d	
ac	

c	
ab	

	

IIIa	 1	 2	 3	 4	

	

IIIb	 1	 2	 3	 4	

	

IIIc	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

3	 d	
ac	 ab	

a	

	

3	 d	
ac	 ab	

b	

	

3	 d	
ac	 ab	

c	

4	 b	
ac	

d	
ac	

	

4	 b	
ac	

d	
ac	

	

4	 b	
ac	

d	
ac	

	

IVa	 1	 2	 3	 4	

	

IVb	 1	 2	 3	 4	

	

IVc	 1	 2	 3	 4	

1	 a	 b	 d	 c	

	

1	 a	 b	 d	 c	

	

1	 a	 b	 d	 c	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

	

2	 c	 d	
ab	 ab	

3	 d	
ac	

a	
ab	

	

3	 d	
ac	

b	
ab	

	

3	 d	
ac	

c	
ab	

4	 b	
ac	 ac	

d	

	

4	 b	
ac	 ac	

d	

	

4	 b	
ac	 d	

ac	



Recognizing	 that	 these	 cases	 limit	 the	 options	 for	 the	 remaining	 cells,	 we	 fill	 out	
according	to	the	rules:	
Ia	 1	 2	 3	 4	

	
Ib	 1	 2	 3	 4	

	
Ic	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

2	 c	 d	 a	 b	

	

2	 c	 d	 b	 a	

	

2	 c	 d	 a	 b	

3	 b	 a	 d	 c	

	

3	 b	 a	 d	 c	

	

3	 b	 c	 d	 a	

4	 d	 c	 b	 a	

	

4	 d	 c	 a	 b	

	

4	 d	 a	 b	 c	

	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	
IIa	 1	 2	 3	 4	

	
IIb	 1	 2	 3	 4	

	
IIc	 1	 2	 3	 4	

1	 a	 b	 d	 c	

	

1	 a	 b	 d	 c	

	

1	 a	 b	 d	 c	

2	 c	 d	 b	 a	

	

2	 c	 d	 a	 b	

	

2	 c	 d	 b	 a	

3	 b	 a	 c	 d	

	

3	 b	 a	 c	 d	

	

3	 b	 c	 a	 d	

4	 d	 c	 a	 b	

	

4	 d	 c	 b	 a	

	

4	 d	 a	 c	 b	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	IIIa	 1	 2	 3	 4	

	
IIIb	 1	 2	 3	 4	

	
IIIc	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

2	 c	 d	 a	 b	

	

2	 c	 d	 b	 a	

	

2	 c	 d	 a	 b	

3	 d	 c	 b	 a	

	

3	 d	 c	 a	 b	

	

3	 d	 a	 b	 c	

4	 b	 a	 d	 c	

	

4	 b	 a	 d	 c	

	

4	 b	 c	 d	 a	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	IVa	 1	 2	 3	 4	

	
IVb	 1	 2	 3	 4	

	
IVc	 1	 2	 3	 4	

1	 a	 b	 d	 c	

	

1	 a	 b	 d	 c	

	

1	 a	 b	 d	 c	

2	 c	 d	 b	 a	

	

2	 c	 d	 a	 b	

	

2	 c	 d	 b	 a	

3	 d	 c	 a	 b	

	

3	 d	 c	 b	 a	

	

3	 d	 a	 c	 b	

4	 b	 a	 c	 d	

	

4	 b	 a	 c	 d	

	

4	 b	 c	 a	 d	



We	see	that	each	of	the	4	cases	results	in	3	singular	outcomes,	based	on	an	arbitrary	
ordering	of	the	upper	left	block.	As	(a,	b,	c,	d)	can	represent	any	permutation	of	the	
numbers	1	 through	4,	 there	are	4! = 24	possible	orderings	of	 the	upper	 left	block,	
each	with	12	distinct	outcomes.	 	∴ ∃ 4! ∙ 12 = 24 ∙ 12 = 288	completed	4x4	sudoku	
boards.	◊	

It	is	interesting	to	note	that	of	the	576	order	4	Latin	squares	[3],	exactly	half	
of	them	are	4x4	sudoku	boards.	
	
B.	Distinct	Enumeration:		
	
Claim:	∃	2	fundamentally	different	4x4	sudoku	boards.	
	
Proof:	Let	S	be	the	set	of	all	288	4x4	sudoku	boards.	Any	𝑥,𝑦 ∈ 𝑆	will	be	considered	
equivalent	 if	 any	group	action	or	combination	of	group	actions	on	𝑥	yield(s)	𝑦.	 Let	
𝐺 = < 𝐵,𝐶, 𝑟!, 𝑟!, 𝑐!, 𝑐!,𝐷! > ∪ 𝑆!,	the	group	generated	by	the	listed	actions	and	the	
group	of	permutations	on	{1,… , 4},	the	listed	actions	defined	thusly:		
	
–B	places	the	first	two	rows	(in	order)	in	the	position	of	the	last	two	rows,	and	the	
last	two	rows	(in	order)	in	the	position	of	the	first	two	rows;		
–C	places	 the	 first	 two	columns	(in	order)	 in	 the	position	of	 the	 last	 two	columns,	
and	the	last	two	columns	(in	order)	in	the	position	of	the	first	two	columns;		
–𝑟!	swaps	the	row	positions	of	rows	1	and	2;		
–𝑟!	swaps	the	row	positions	of	rows	3	and	4;	
–𝑐!	swaps	the	column	positions	of	rows	1	and	2;	
–𝑐!	swaps	the	column	positions	of	columns	3	and	4;	
–𝐷!	indicates	the	symmetries	of	the	square:	{𝐼,𝑅,𝑅!,𝑅!,𝐹,𝐹𝑅,𝐹𝑅!,𝐹𝑅!}	
	
It	can	be	observed	that,	given	a	legal	sudoku	board,	the	legality	is	preserved	by	each	
of	these	actions:	for	the	symmetries	of	the	square,	all	rows,	columns,	and	2x2	blocks	
are	preserved,	while	columns	may	become	rows	and	vice	versa,	and	the	order	of	all	
rows	 and/or	 columns	may	 be	 reversed;	 for	 the	 first	 six	 actions,	 any	 2x2	 block	 is	
preserved,	 and	 if	 the	 permutation	 of	 a	 row	 or	 column	 is	 altered,	 so	 too	 are	 the	
permutations	 of	 all	 intersecting	 rows/columns.	 Further,	 given	 that	 function	
composition	is	associative,	any	combination	of	these	actions	also	preserves	legality.		
	 We	consider	any	two	sudoku	boards	equivalent	iff	any	composition	of	these	
actions	 and/or	𝑆!	transforms	 one	 to	 the	 other.	 Of	 the	 288	 total	 boards,	 we	 found	
that	 a	 board	with	 any	 given	 upper	 left	 block	was	 permutable	 to	 24	 others.	 Then	
there	are	at	most	288	÷	24	=	12	non-equivalent	boards.	We	examine	the	12	subcases	
found,	and	find	that	some	are	indeed	transformations	of	others:	
	
	
	
	
	



	
	
	
=	IIa	
	
	
	
	
	
	
	
	
	
	
=IIIa	
	
	
	
	
	
	
	

	
	
	
	
	
=	IVa	
	
	
	
	
	
	

	
	
	
	
	
=	IIb		
	
	
	
	
	
	

Ia	 1	 2	 3	 4	

	 	
	 1	 2	 	3	 4	

1	 a	 b	 c	 d	

	 	

1	 a	 b	 	d	 c	

2	 c	 d	 a	 b	

	

𝑐!
→	 2	 c	 d	 	b	 a	

			3	 b	 a	 d	 c	

	 	

3	 b	 a	 	c	 d	

4	 d	 c	 b	 a	

	 	

4	 d	 c	 	a	 b	

Ia	 1	 2	 3	 4	

	 	
	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	 	

1	 a	 b	 c	 d	

2	 c	 d	 a	 b	 𝑟!
→	

	

2	 c	 d	 a	 b	

3	 b	 a	 d	 c	

	 	

3	 d	 c	 b	 a	

4	 d	 c	 b	 a	

	 	

4	 b	 a	 d	 c	

IIIa	 1	 2	 3	 4	

	 	
	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	 	

1	 a	 b	 d	 c	

2	 c	 d	 a	 b	 𝑐!
→	

	

2	 c	 d	 b	 a	

3	 d	 c	 b	 a	

	 	

3	 d	 c	 a	 b	

4	 b	 a	 d	 c	

	 	

4	 b	 a	 c	 d	

Ib	 1	 2	 3	 4	

	 	
	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	 	

1	 a	 b	 d	 c	

2	 c	 d	 b	 a	 𝑐!
→	

	

2	 c	 d	 a	 b	

3	 b	 a	 d	 c	

	 	

3	 b	 a	 c	 d	

4	 d	 c	 a	 b	

	 	

4	 d	 c	 b	 a	



	
	
	
	
=	IIIb	
	
	
	
	
	
	

	
	
	
	
	
=	IVb	
	
	
	
	
	
	

	
	
	
	
	
=	IIc	
	
	
	
	
	
	
	
	
	
	
=	IIIc	
	
	
	
	
	
	

Ib	 1	 2	 3	 4	

	 	
	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	 	

1	 a	 b	 c	 d	

2	 c	 d	 b	 a	 𝑟!
→	

	

2	 c	 d	 b	 a	

3	 b	 a	 d	 c	

	 	

3	 d	 c	 a	 b	

4	 d	 c	 a	 b	

	 	

4	 b	 a	 d	 c	

IIIb	 1	 2	 3	 4	

	 	
	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	 	

1	 a	 b	 d	 c	

2	 c	 d	 b	 a	 𝑐!
→	

	

2	 c	 d	 a	 b	

3	 d	 c	 a	 b	

	 	

3	 d	 c	 b	 a	

4	 b	 a	 d	 c	

	 	

4	 b	 a	 c	 d	

Ic	 1	 2	 3	 4	

	 	
	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	 	

1	 a	 b	 d	 c	

2	 c	 d	 a	 b	 𝑐!
→	

	

2	 c	 d	 b	 a	

3	 b	 c	 d	 a	

	 	

3	 b	 c	 a	 d	

4	 d	 a	 b	 c	

	 	

4	 d	 a	 c	 b	

Ic	 1	 2	 3	 4	

	 	
	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	 	

1	 a	 b	 c	 d	

2	 c	 d	 a	 b	 𝑟!
→	

	

2	 c	 d	 a	 b	

3	 b	 c	 d	 a	

	 	

3	 d	 a	 b	 c	

4	 d	 a	 b	 c	

	 	

4	 b	 c	 d	 a	



	
	
	
	
	
=	IVc	
	
	
	
	
	
	

	
We	have	thus	found	that	there	are	at	most	three	equivalence	classes	of	boards.	By	
representative,	they	are:	

A	 1	 2	 3	 4	

	

B	 1	 2	 3	 4	

	

C	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

2	 c	 d	 a	 b	

	

2	 c	 d	 b	 a	

	

2	 c	 d	 a	 b	

3	 b	 a	 d	 c	

	

3	 b	 a	 d	 c	

	

3	 b	 c	 d	 a	

4	 d	 c	 b	 a	

	

4	 d	 c	 a	 b	

	

4	 d	 a	 b	 c	

	
We	 note	 that	 our	 transformations	 are	 actions	 of	 a	 group,	 with	 the	 operation	 of	
function	 composition;	 then	 combinations	 of	 transformations	 are	 themselves	 valid	
transformations:	
	

B	 1	 2	 3	 4	

	
	 1	 2	 3	 4	

	
	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	

1	 a	 c	 b	 d	 		
1	 a	 b	 c	 d	

2	 c	 d	 b	 a	 𝐹𝑅!
→	

2	 b	 d	 a	 c	 𝑏𝑐  
→		

2	 c	 d	 a	 b	

3	 b	 a	 d	 c	

	

3	 c	 b	 d	 a	 		
3	 b	 c	 d	 a	

4	 d	 c	 a	 b	

	

4	 d	 a	 c	 b	 		
4	 d	 a	 b	 c	

=	C	
	
	
	
	

IIIc	 1	 2	 3	 4	

	 	
	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	 	

1	 a	 b	 d	 c	

2	 c	 d	 a	 b	 𝑐!
→	

	

2	 c	 d	 b	 a	

3	 d	 a	 b	 c	

	 	

3	 d	 a	 c	 b	

4	 b	 c	 d	 a	

	 	

4	 b	 c	 a	 d	



Then	we	see	that	there	are	at	most	two	equivalence	classes	of	4x4	boards:	

A	 1	 2	 3	 4	

	

B	 1	 2	 3	 4	

1	 a	 b	 c	 d	

	

1	 a	 b	 c	 d	

2	 c	 d	 a	 b	

	

2	 c	 d	 b	 a	

3	 b	 a	 d	 c	

	

3	 b	 a	 d	 c	

4	 d	 c	 b	 a	

	

4	 d	 c	 a	 b	

	
Notice	that	the	only	differences	between	boards	A	and	B	are	the	cell	pairs	in	

row	2,	columns	3	&	4,	and	row	4,	columns	3	&	4.	In	order	to	transform	from	A	to	B	
(and	 since	 G	 is	 a	 group,	 if	 such	 a	 transformation	 exists	 then	 an	 inverse	
transformation	 exists	 from	 B	 to	 A),	 we	 need	 to	 make	 the	 following	 cell	 changes:	
2, 3 ↔ 2, 4 ; 4, 3 ↔ (4, 4) .	 If	 this	 is	 a	 valid	 transformation,	 then	 it	 is	 a	
combination	 of	 the	 generating	 actions;	 further,	 if	 it	 is	 a	 valid	 action,	 then	 when	
applied	 to	 a	 legal	 board,	 legality	 is	 preserved	under	 the	 action.	However,	 observe	
that	 this	 action,	 performed	 on	 a	 legal	 board,	 renders	 the	 board	 illegal	 (observe	
columns	3	and	4):	
	

	 1	 2	 3	 4	

	
	 1	 2	 3	 4	

1	 a	 c	 b	 d	

	

1	 a	 c	 b	 d	

2	 b	 d	 a	 c	 →	
2	 b	 d	 c	 a	

3	 c	 b	 d	 a	

	

3	 c	 b	 d	 a	

4	 d	 a	 c	 b	

	

4	 d	 a	 b	 c	

Then	this	action	is	not	a	legal	transformation,	and	thus	not	a	combination	of	any	of	
the	generation	actions,	and	thus	not	a	transformation	belonging	to	our	group.	Then	
there	do	not	exist	any	transformations	 𝐴 ↔ [𝐵].	∴ ∃ 2	fundamentally	different	4x4	
sudoku	boards.	◊	

We	also	see	that	 𝐴 = 24 ∙ 4 = 96, and 𝐵 = 24 ∙ 8 = 192.	
	
	
	 	



III.	Diagonal	4x4	Sudoku	Boards	
	
A:	Distinct	Enumeration:	
	
We	 turn	our	attention	 to	diagonally	distinct	 sudoku	boards:	 those	with	 the	added	
constraint	that	each	of	the	main	diagonals	must	also	contain	the	numbers	{1,	2,	3,	4}.	
(See	Akman	 [1]	 for	 a	 proof	 of	 existence	 of	 diagonally	 distinct	 boards	 for	 any	 size	
sudoku.)	
	
Claim:	There	is	only	one	distinct	diagonal	4x4	sudoku	board.	
	
Proof:	Given	that	there	are	two	distinct	boards	overall,	then	there	must	be	at	most	2	
distinct	diagonal	boards.	We	see	that	board	IIIa,	of	[A],	satisfies:	

IIIa	 1	 2	 3	 4	

1	 a	 b	 c	 d	

2	 c	 d	 a	 b	

3	 d	 c	 b	 a	

4	 b	 a	 d	 c	

	
However,	[B]	does	not	readily	present	such	a	board.	Observe	that	diagonality	

is	 a	 structural	 feature,	 and	 does	 not	 change	 under	 permutation:	 For	 any	 diagonal	
where	not	all	of	{a,	b,	c,	d}	are	present,	no	permutation	{a,	b,	c,	d}	→ 𝑆!	can	add	any	
of	 the	missing	 element(s)	 (as	permutations	 are	 one-to-one).	 Equivalence	 class	 [B]	
was	found	by	collapsing	8	subcases,	all	transformable	to	each	other.	The	8	subcases	
each	represented	24	boards,	all	achievable	by	permutation.	Then	since	none	of	the	8	
subcases	are	 themselves	not	diagonal,	 then	none	of	 the	permutations	 represented	
by	the	8	subcases	are	themselves	diagonal.	There	are	288	boards	total;	96	are	in	[A],	
leaving	192	in	[B].	As	observed,	there	are	8	boards	structurally	non-diagonal,	each	
representing	 24	 non-diagonal	 permutations.	 Then	 [B]	 contains	8 ∙ 24 = 192	non-
diagonal	 boards	⇒	[B]	 contains	 no	 diagonal	 boards.	 Then	 since	 a	 single	 diagonal	
board	has	been	found	in	[A],	all	other	diagonal	boards	must	be	reachable	by	some	
combination	of	transformations	and	permutations.	∴ ∃ 1	fundamentally	distinct	4x4	
sudoku	board.	◊		
	
	 	



B.	Total	Enumeration:	
	
Claim:	∃ 48	total	diagonal	4x4	sudoku	boards.	
	
Proof:	Observe	that	boards	IIa	and	IIIa,	of	equivalence	class	[A],	are	both	diagonal,	
whereas	 boards	 Ia	 and	 IVa	 are	 not.	 Each	 of	 IIa	 and	 IIIa	 represent	 24	 boards	 by	
permutation;	then	there	are	at	least	24 ∙ 2 = 48	diagonal	boards.	

In	 order	 to	 prove	 that	 there	 are	 at	most	 48	 diagonal	 boards,	 we	 turn	 our	
attention	 to	 the	 different	 structures	 of	 the	 4x4	 boards,	 and	 which	 group	 actions	
preserve	or	break	those	structures.	
	
C.	Structures	of	4x4	Board	Structures	and	Group	Actions:	
	
It	is	obvious	that	all	of	𝑆!	as	well	as	the	actions	of	𝐷!	preserve	diagonality	of	a	board.	
We	 focus	 on	{𝐵,𝐶, 𝑟!, 𝑟!, 𝑐!, 𝑐!}.	 Observe	 that	 under	R,	 a	 90º	 clockwise	 rotation,	 all	
rows	 become	 columns	 and	 all	 columns	 become	 rows.	 Then	 under	 R,	𝐵 ≡ 𝐶, 𝑟! ≡
𝑐!, 𝑟! ≡ 𝑐!.	Then	we	may	focus	only	on	{𝐵,𝐶, 𝑟!, 𝑟!}.	Consider	the	diagonal	board	IIIa:	

IIIa	 1	 2	 3	 4	

1	 a	 b	 c	 d	

2	 c	 d	 a	 b	

3	 d	 c	 b	 a	

4	 b	 a	 d	 c	

	
Under	𝑟!,	this	is	transformed	thusly:	

IIIa	 	 	 	 	
	 	

	 	 	 	 	

		 a	 b	 c	 d	

	 	

		 c	 d	 a	 b	

		 c	 d	 a	 b	 𝑟!
→	

	

		 a	 b	 c	 d	

		 d	 c	 b	 a	

	 	

		 d	 c	 b	 a	

		 b	 a	 d	 c	

	 	

		 b	 a	 d	 c	

Clearly,	diagonality	is	not	preserved.	And	under	𝑟!:	
	
	
	
	
	

	 	 	 	

	 	

	 	 	 	 	



IIIa	

		 a	 b	 c	 d	

	 	

		 a	 b	 c	 d	

		 c	 d	 a	 b	 𝑟!
→	

	

		 c	 d	 a	 b	

		 d	 c	 b	 a	

	 	

		 b	 a	 d	 c	

		 b	 a	 d	 c	

	 	

		 d	 c	 b	 a	

Again,	diagonality	is	not	preserved.	
However,	diagonality	 is	preserved	under	B	 (and	thus	under	C):	For	the	two	

cells	 (4,	 1),	 (3,	 2),	 in	 diagonal	 board	 these	 are	 two	 of	 the	 four	 distinct	 digits.	 The	
other	two	of	the	four	must	be	present,	in	some	order,	in	cells	(1,	4)	and	(2,	3).		The	
same	is	true	of	the	other	two	blocks,	 for	the	upper	left-	 lower	right	diagonal.	Then	
the	digits	 in	the	four	cells	(3,	1),	(4,	2),	(1,	3),	(2,	4),	must	also	be	the	four	distinct	
digits.	Under	the	action	B,	the	cells	(3,	1)	and	(4,	2)	become	the	top	two	digits	of	the	
upper-	left	lower	right	diagonal,	while	cells	(1,	3)	and	(2,	4)	become	the	lower	two	
digits	 of	 the	 diagonal.	 Similarly	 for	 the	 upper	 right-	 lower	 left	 diagonal.	 Then	 B	
preserves	diagonality;	by	R	or	𝑅!,	so	too	does	C.	

Consider	the	two	non-diagonal	representatives	of	equivalence	class	[A]:	

Ia	 	 	 	 	

	 	

IVa	 	 	 	 	

		 a	 b	 c	 d	

	 	

		 a	 b	 d	 c	

		 c	 d	 a	 b	

	 	

		 c	 d	 b	 a	

		 b	 a	 d	 c	

	 	

		 d	 c	 a	 b	

		 d	 c	 b	 a	

	 	

		 b	 a	 c	 d	

Just	as	{𝐷!, 𝑆!,𝐵,𝐶}	preserve	diagonality,	the	same	argument	holds	for	these	actions	
preserving	 non-diagonality.	 Indeed,	 the	 actions	{𝑟!, 𝑟!, 𝑐!, 𝑐!}	are	 the	 only	 actions	
which	will	transform	diagonal	boards	to	non-diagonal	boards	and	vice	versa.	

Consider	 the	 diagonal	 entries	 of	 the	 two	 boards	 above.	 Board	 Ia	 has	 as	
entries	on	its	main	diagonals	{a,	d};	board	Iva	has	entries	{ad},	{bc}.	We	will	classify	
board	structures	based	on	their	diagonal	entries.	Board	Ia	and	its	24	permutations	
have	 a	 total	 of	 2	 distinct	 digits	 along	 the	 main	 diagonals.	 Board	 IVa	 and	 its	 24	
permutations	have	2	distinct	digits	along	each	of	its	main	diagonals.	Boards	IIa	and	
IIIa,	being	the	diagonal	boards,	of	course	have	all	of	the	distinct	digits	along	each	of	
their	 main	 diagonals.	 We	 see,	 then	 that	 equivalence	 class	 [A]	 can	 be	 further	
structured	into	three	equivalence	subclasses:	[Ia],	which	contains	24	boards,	each	of	
which	have	a	total	of	2	diagonal	digits;	[IIa]	=	[IIIa],	which	contains	48	boards,	each	
of	 which	 are	 diagonal;	 and	 [IVa],	 which	 contains	 24	 boards,	 each	 of	 which	 has	 2	
distinct	digits	along	each	of	its	diagonals.		



These	account	for	all	96	of	the	boards	of	[A];	as	there	are	no	diagonal	boards	
in	 [B],	 then	 there	 are	 at	 most	 48	 diagonal	 boards;	 given	 the	 lower	 bound	 found	
earlier,	then	there	are	exactly	48	diagonal	4x4	boards.	◊	
	
We	have	seen	board	structures,	all	of	equivalence	class	[A],	which	contain	either	2	
or	4	distinct	digits	along	the	diagonals.	What	of	the	boards	of	[B]?	Indeed,	all	of	the	
boards	of	[B]	each	contain	3	distinct	digits	along	each	diagonal.	
	 It	can	be	seen	(at	the	end	of	section	II.A)	that	each	of	the	8	representatives	of	
equivalence	class	[B]	=	[C]	have	three	distinct	digits	along	each	main	diagonal.	It	is	
clear	 that	 no	 permutation	 of	𝑆!	will	 change	 the	 number	 of	 distinct	 digits	 along	 a	
diagonal.	Here,	we	show	that	these	8	boards	(and	their	permutations)	are	all	of	the	
possible	4x4	sudoku	boards	with	3	distinct	digits	across	the	diagonals.	
	 We	condition	boards	based	on	 the	upper	 left-	 lower	right	diagonal.	Given	a	
sequence	 _	 _	 |	 _	 _,	we	 see	 that	 there	 are	 four	 structural	 possibilities:	 the	 first	 cell	
matches	the	third,	the	first	cell	matches	the	fourth,	the	second	cell	matches	the	third,	
the	 second	 cell	matches	 the	 fourth;	with	 each	 of	 the	 two	 remaining	 cells	 distinct.	
Without	loss	of	generality,	we	note	the	possibilities:		
	

1)	 a	 		 		 		 		 2)	 a	 		 		 		

	

		 b	 		 		 		 		 		 b	 		 		

	

		 		 a	 		 		 		 		 		 c	 		

	

		 		 		 c	 		 		 		 		 		 a	

	

3)	 a	 		 		 		 		 4)	 a	 		 		 		

		 		 b	 		 		 		 		 		 b	 		 		

		 		 		 b	 		 		 		 		 		 c	 		

		 		 		 		 c	 		 		 		 		 		 b	

	
Recognizing	 that	 these	 cases	 limit	 the	 options	 for	 the	 remaining	 cells,	 we	 fill	 out	
according	to	the	rules:	
	
	
	
	
	
	



1)	 a	
cd	 bcd	 bd	

		 2)	 a	
cd	 bd	 bcd	

	
cd	

b	
cd	

a	 		 		
cd	

b	 a	
cd	

	
bcd	

cd	 a	
bd	

		 		
bd	

a	 c	
bd	

	
bd	

a	
bd	

c	 		 		
bcd	 cd	 bd	

a	

	

3)	 a	
cd	 cd	

b	 		 4)	 a	
cd	

b	
cd	

		
cd	

b	
acd	 ad	

		 		
cd	
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acd	 acd	

b	
ad	

		 		 b	
ad	

c	
ad	

		 b	
ad	 ad	

c	 		 		
cd	 acd	 ad	

b	

	
We	pick	an	arbitrary	single	cell	with	two	options,	condition,	and	fill	out:	
	

1a)	 a	 c	 b	 d	 		 1b)	 a	 d	 c	 b	

	 d	 b	 c	 a	 		 	 c	 b	 d	 a	

	 c	 d	 a	 b	 		 	 b	 c	 a	 d	

	 b	 a	 d	 c	 		 	 d	 a	 b	 c	

	

2a)	 a	 c	 d	 b	 	 2b)	 a	 d	 b	 c	

		 d	 b	 a	 c	 	 		 c	 b	 a	 d	

		 b	 a	 c	 d	 	 		 d	 a	 c	 b	

		 c	 d	 b	 a	 	 		 b	 c	 d	 a	

	
	
	
	
	
	
	



3a)	 a	 c	 d	 b	 		 3b)	 a	 d	 c	 b	

		 d	 b	 c	 a	 		 		 c	 b	 a	 d	

		 c	 a	 b	 d	 		 		 d	 c	 b	 a	

		 b	 d	 a	 c	 		 		 b	 a	 d	 c	

	

4a)	 a	 c	 b	 d	 	 4b)	 a	 d	 b	 c	

		 d	 b	 a	 c	 	 		 c	 b	 d	 a	

		 b	 d	 c	 a	 	 		 b	 a	 c	 d	

		 c	 a	 d	 b	 	 		 d	 c	 a	 b	

	
Though	these	boards	do	not	initially		seem	familiar,	we	see	that	under	the	following	
permutations,	 these	 boards	 are,	 in	 fact,	 the	 exact	 representatives	 of	 equivalence	
class	[B]:	
	
1a)	:	 𝑏𝑑𝑐 →	IIc;		 1b)	:	 𝑏𝑑 →	IIIb;		 2a)	:	 𝑏𝑑𝑐 →	IIIC;		 2b)	:	 𝑏𝑑 →	IIB;	
3a)		 𝑏𝑑𝑐 →	IB;		 3b)	:	 𝑏𝑑 →	IC;		 4a)	:	 𝑏𝑑𝑐 →	IVB;		 4b)	:	 𝑏𝑑 →	IVC.	
	

Then	we	have	8	board	structures,	each	representing	24	permutations;	 then	
we	see	that	there	are	exactly	192	possible	boards	with	exactly	three	distinct	digits	
along	each	main	diagonal.	As	this	is	the	exact	size	of	[B],	we	recognize	the	structure	
inherent	to	the	equivalence	class.	

We	now	see	the	reason	for	the	two	equivalence	classes:	no	permutation	∈ 𝑆!	
can	 change	 the	 number	 of	 digits	 along	 a	 diagonal,	 and	 any	 of	 the	 group	 action	
transformations	 must	 change	 an	 even	 number	 of	 digits	 when	 counting	 along	 the	
diagonals.	Further,	we	now	see	a	distinctive	way	to	classify	boards:	that	of	counting	
the	distinct	digits	along	each	main	diagonal.	◊	
	
	 	



Conclusion	
	
A	variation	on	Latin	squares,	Sudoku	as	a	puzzle	was	invented	in	the	late	1970s	[5].	
As	with	many	playful	diversions,	though	its	origins	were	not	mathematical,	sudoku	
boards	 as	 mathematical	 objects	 hold	 great	 opportunities	 for	 study.	 Indeed,	 it	 is	
surprising	how	much	can	be	found	in	a	sudoku	board,	and	the	many	ways	it	can	be	
studied.	 Certainly	 the	 puzzle	 maker(s)	 who	 created	 “Number	 Place”	 had	 no	
intention	 that	 a	board	be	 encoded	as	 a	 graph,	 or	 that	 chromatic	polynomials	may	
indicate	the	number	of	valid	solutions	for	a	given	puzzle.		
	 Regarding	the	chromatic	polynomial	as	relates	to	sudoku	graphs,	the	partial	
chromatic	polynomial	is	an	object	deserving	further	study.	While	it	has	been	shown	
that	this	polynomial	is	monic	of	known	degree,	our	investigation	has	not	shed	light	
on	its	further	properties,	those	shared	with	or	different	from	the	classic	chromatic	
polynomial.	For	 instance,	 is	every	power	of	𝜆	present	(up	to	the	degree)?	Must	the	
signs	of	the	terms	alternate?	What	is	the	meaning,	if	any,	of	the	constant	term?	Why	
does	 this	 polynomial	 have	 a	 constant	 term	 at	 all?	 These	 questions,	 beyond	 our	
scope,	pique	the	curiosity.	
	 We	 have	 used	 4x4	 boards	 as	 our	 object	 of	 study;	 in	 the	 world	 of	 sudoku,	
these	are	small	boards,	and	in	the	mathematical	study	of	sudoku,	4x4	is	the	trivial	
case.	Given	an	opportunity,	 this	 author	 intends	 to	 study	 sudoku	 further,	 including	
9x9	boards;	in	the	meantime,	we	shall	not	forget	that	this	fascinating	mathematical	
object	is	also	an	enjoyable	puzzle.	
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